

# Karolinska Institutet

# 6.2 Exposure-dependent sampling

## exposure-enriched controls, counter-matching

# Benefits of outcome-dependent sampling Karolinska (case-control and extensions)

Large efficiency gains for rare outcome (3+ controls per case)

For binary outcome

logistic regression gives valid estimate of population OR

Matched sets/pairs (e.g. discordant twins): Valid OR from conditional logistic regression

For time-to-event outcome:

matching on time and conditional logistic regression gives valid estimate of HR under proportional hazards



# Other outcome-dependent sampling case-cohort design (Lecture 6.1)

Selects a "subcohort" at baseline (to be used as the comparison group) and (usually) all cases during follow-up.

Efficiency similar to nested case-control (similar sample size)

Analysis:

Weighted Cox regression

Weights = 1 for cases

= inverse of sampling fraction for non-cases valid estimates of population HR and absolute risk



Some simple designs, for example:

Selection of the numbers of exposed and unexposed individuals (esp. where exposure is rare) in crosssectional study or at baseline of cohort study

### Matched cohort design:

Frequency matching within confounder strata (matched pairs, 1:1 exposed:unexposed)

Especially useful for studies of *<u>rare exposure</u>* 



> BMC Med. 2021 Nov 16;19(1):301. doi: 10.1186/s12916-021-02177-0.

# COVID-19 and risk of subsequent life-threatening secondary infections: a matched cohort study in UK Biobank

Can Hou <sup>1 2</sup>, Yihan Hu <sup>1 2</sup>, Huazhen Yang <sup>1 2</sup>, Wenwen Chen <sup>3</sup>, Yu Zeng <sup>1 2</sup>, Zhiye Ying <sup>1 2</sup>, Yao Hu <sup>1 2</sup>, Yajing Sun <sup>1 2</sup>, Yuanyuan Qu <sup>1 2</sup>, Magnús Gottfreðsson <sup>4 5</sup>, Unnur A Valdimarsdóttir <sup>6 7 8</sup>, Huan Song <sup>9 10 11</sup>

From 445,845 UK Biobank participants, 5151 individuals with a positive test result or hospitalized with a diagnosis of COVID-19 were included in the exposed group.

For each exposed individual, up to 10 unexposed randomly selected matched individuals (n = 51,402).

Cox regression analysis



## Less familiar exposure-dependent sampling

.... where exposure-dependent sampling strategies incorporated into familiar design:

Two-stage sampling on a surrogate of exposure  $\sqrt{}$ 

Exposure-enriched case-control

Exposure density sampling

Counter-matched nested case-control



Proposed for study of gene-environment interaction (high efficiency for skewed environmental exposure and rare gene)

Idea: over- (or under-) sample subjects with high/low exposure.

Does <u>not</u>need the prevalences required by two-stage design

Straightforward analysis, logistic regression

## **Motivating Example**



- Huque et al. *Genetic Epidemiology*, 2016, 40(7), 570-578
- Earlier case-control study in 23 villages in Bangladesh to investigate:
- dose-response of water arsenic levels with skin lesions
- interaction with genetic polymorphisms

Investigators had oversampled controls with low exposure (<50µg/l) to "overcome" skewed distribution of arsenic levels

### **Recall from earlier lectures:**



For cohort or cross-sectional data, logistic model is a "regression model" in the sense that X's can be fixed/chosen but Y random:

We model 
$$P[Y = 1] = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$$

Can compute prevalance from  $\boldsymbol{\alpha}$ 

But for case-control data, we are modelling P[Y = 1 | X] *conditional on being sampled*  $= \frac{e^{\alpha * + \beta X}}{1 + e^{\alpha * + \beta X}} \quad \text{where } \alpha^* = \alpha + \log_e \frac{\pi_1}{\pi_0}$ 

## **Returning to the arsenic example**



- Y= case/control status, skin lesions
- X= E (arsenic exposure: well-water and toenail levels)
  - G (genetic polymorphism in X-ray repair gene (XRCC1 Arg194Trp) GE (interaction)

Assume population model:

Logit  $[Y = 1|E, G] = \alpha + \beta_E E + \beta_G G + \beta_{GE} GE$ 

For the sampled data, the model is

Logit  $[Y = 1 | E, G, S = 1] = \alpha^* + \beta_E E + \beta_G G + \beta_{GE} GE$ 

where S=1 depends on case/control status and high/low exposure



## Using Bayes Theorem as before..

Logit  $[Y = 1|E, G, S = 1] = \alpha + \log_{e} \frac{\pi_{1H}}{\pi_{0H}} + \beta_{E} E + \beta_{G} G + \beta_{GE} GE$  if X>=50 Logit  $[Y = 1|E, G, S = 1] = \alpha + \log_{e} \frac{\pi_{1L}}{\pi_{0L}} + \beta_{E} E + \beta_{G} G + \beta_{GE} GE$  if X<50 Where the  $\pi_{1}$  and  $\pi_{0}$  terms are the case and control sampling probabilities, in the high  $\pi_{1H}$  and  $\pi_{0H}$  and low ( $\pi_{1L}$  and  $\pi_{0L}$ ) exposure groups.

So, using low exposure as reference, the model can be written: Logit  $[Y = 1|E, G, S = 1] = \alpha^* + \beta_{HL}^* I (E >50) + \beta_E E + \beta_G G + \beta_{GE} GE$ where  $\alpha^* = \alpha + \log_e \frac{\pi_{1L}}{\pi_{0L}}$  and  $\beta_{HL}$  is the difference  $\log_e \frac{\pi_{1H}}{\pi_{0H}} - \log_e \frac{\pi_{1L}}{\pi_{0L}}$ 

 $\rightarrow$  straightforward logistic regression!

## **Power of EECC depends on:**



- Exposure distribution (asymmetry)
- Ratio of high to low exposed persons in the sample
- Case:control ratio
- gene frequency





# Exposure density sampling (for a time-dependent exposure)

Quick look at Cox model



### **Time-dependent exposure**



NCC sampling and conditional logistic regression: HR for exposed (yes/no, level, duration) vs. unexposed

### Cohort approach: data gathered retrospectively

**Example:** association of length of hospital stay with exposures during the hospitalisation (e.g. nosocomial infection)\*.



**Fig. 1** Example for risk set sampling: For patient A, who gets exposed at day 3, patients C–G are suitable partners by using exposure density sampling whereas only patients D, E and G can be selected using matching for time to exposure.

\* M Wolkewitz, J.Beyersmann, P Gastmeier, M.Schumacher. Meth Inf Med, 2009



**Fig. 1** Example for risk set sampling: For patient A, who gets exposed at day 3, patients C–G are suitable partners by using exposure density sampling whereas only patients D, E and G can be selected using matching for time to exposure.

### "Matching on time to exposure":

- For each exposed person, match unexposed persons who have been in hospital at least as long as the time-to-exposure
- selected from patients who remained unexposed throughout
- Cox regression (time zero = exposure/matched)

Common in hospital epidemiology

## **Exposure density sampling**



Same principle as incidence density sampling

unexposed can later become exposed

Removes the "time-dependent bias" (also called "survival bias")

Standard Cox regression for time-dependent covariates (with robust variance)

### **Potential applications:**

Discontinuation of treatment in a cohort Outcome after (waiting for) treatment in clinical cohort

## Countermatching



#### Matching

- Purpose: to make cases and controls as similar as possible
- Match on variables not of interest (confounders)
- The effect of the matching factor cannot be estimated by standard methods

#### Countermatching\*

- Purpose: to make cases and controls as different as possible
- Countermatch on exposure or surrogate of exposure
- Wider range of exposure improves precision

Langholz and Clayton, Env. Health Persp, 1994







Estimates obtained from weighted conditional likelihood

need risk set sizes in sampling strata in study base



## "Counterintuitive matching?

Cologne, commentary in Epidemiology 1997

..... still not widespread, despite:

good efficiency

ability to get estimates from standard software (weights, offset)

Custom R commands at

https://github.com/nyilin/SamplingDesignTools

data preparation not difficult



## **Return to transfusions and post-partum VTE**

966,070 deliveries, 472 cases of VTE within 6 weeks of delivery 1:5 NCC study had 84% of sets concordant for exposure!

|              | $\mathbf{Cohort}$ | 1:5 NCC<br>CLR   | 1:5 CM<br>Weighted<br>CLR |
|--------------|-------------------|------------------|---------------------------|
| RBC units:   |                   |                  |                           |
| 1-2          | 2.53(1.57, 4.07)  | 2.69(1.45, 4.98) | 2.60(1.61, 4.20)          |
| 3-5          | 2.79(1.44, 5.42)  | 3.06(1.17, 8.03) | 2.84(1.45, 5.55)          |
| >5           | 4.36(1.62, 11.7)  | 3.65(0.87, 15.3) | 4.00(1.46, 10.9)          |
| Smoking      | 1.51(1.13, 2.03)  | 1.42(1.01, 2.01) | 1.51(1.07, 2.13)          |
| Preeclampsia | 2.50(1.79, 3.48)  | 2.15(1.37, 3.36) | 1.94(1.29, 2.93)          |





- Many standard epidemiology designs can be made more efficient by exploiting <u>exposure-dependent</u> sampling.
- Benefit in cost-efficiency for investment in design/analysis
- Standard methods (some using re-weighting) provide valid cohort estimates
- Greatest potential for savings where exposure information is costly (e.g. molecular/genetic studies)